Convexity conditions of Kantorovich function and related semi-infinite linear matrix inequalities

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convexity conditions of Kantorovich function and related semi-infinite linear matrix inequalities

The Kantorovich function (xT Ax)(xT A−1x), where A is a positive definite matrix, is not convex in general. From a matrix or convex analysis point of view, it is interesting to address the question: When is this function convex? In this paper, we prove that the 2dimensional Kantorovich function is convex if and only if the condition number of its matrix is less than or equal to 3 + 2 √ 2. Thus ...

متن کامل

Kantorovich type inequalities for ordered linear spaces

In this paper Kantorovich type inequalities are derived for linear spaces endowed with bilinear operations ◦1 and ◦2. Sufficient conditions are found for vector-valued maps Φ and Ψ and vectors x and y under which the inequality Φ(x) ◦2 Φ(y) ≤ C + c 2 √ Cc Ψ(x ◦1 y) is satisfied. Complementary inequalities are also given. Some results of Dragomir [J. Inequal. Pure Appl. Math., 5 (3), Art. 76, 20...

متن کامل

Several Matrix Euclidean Norm Inequalities Involving Kantorovich Inequality

where λ1 ≥ · · · ≥ λn > 0 are the eigenvalues of A. It is a very useful tool to study the inefficiency of the ordinary least-squares estimate with one regressor in the linear model. Watson 1 introduced the ratio of the variance of the best linear unbiased estimator to the variance of the ordinary least-squares estimator. Such a lower bound of this ratio was provided by Kantorovich inequality 1....

متن کامل

Ela Kantorovich Type Inequalities for Ordered Linear Spaces∗

In this paper Kantorovich type inequalities are derived for linear spaces endowed with bilinear operations ◦1 and ◦2. Sufficient conditions are found for vector-valued maps Φ and Ψ and vectors x and y under which the inequality Φ(x) ◦2 Φ(y) ≤ C + c 2 √ Cc Ψ(x ◦1 y) is satisfied. Complementary inequalities are also given. Some results of Dragomir [J. Inequal. Pure Appl. Math., 5 (3), Art. 76, 20...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2011

ISSN: 0377-0427

DOI: 10.1016/j.cam.2011.03.034